
Designing and Implementing a MANET Network
Service Interface with Compact .NET on Pocket PC

Fabio De Rosa

Università di Roma “La Sapienza”
Dipartimento di Informatica e Sistemistica

Via Salaria 113 (2nd floor, lab C4)
 I-00198 Roma, Italy

derosa@dis.uniroma1.it

Massimo Mecella
Università di Roma “La Sapienza”

Dipartimento di Informatica e Sistemistica
Via Salaria 113 (2nd floor, room 231)

 I-00198 Roma, Italy

mecella@dis.uniroma1.it

ABSTRACT
Operators forming an ad hoc network (MANET) in emergency situations would benefit from software
supporting their interaction. To date, however, development of such a coordination layer has required
abstractions on the services and data provided by the lower network layers. In this paper we present the design
and a possible implementation of the Network Service Interface [DeRosa03a] as a .NET Compact Framework
component, coded in C#, to be run on PDAs with the Windows Mobile operating system. We chose Dynamic
Source Routing (DSR) as the routing protocol supporting inter-device communication.

Keywords
Cooperative Work – Mobile Ad hoc Network – Network Service Interface – Object and Component Design –
.NET Compact Framework – DSR.

1. INTRODUCTION
The widespread availability of network-enabled
hand-held devices (e.g. PDAs with WiFi - the
802.11x-based standard) has made pervasive
computing environment development an emerging
reality. Mobile (or Multi-hop) Ad hoc NETworks
(MANETs, [Agrawal03a]) are mobile device
networks communicating with one another via
wireless links without relying on an underlying
infrastructure. This distinguishes them from other
types of wireless networks, such as cell networks or
infrastructure-based wireless networks. Each device
in a MANET acts as an endpoint and as a router
forwarding messages to devices within radio range.
MANETs are a sound alternative to infrastructure-
based networks whenever the infrastructure is
lacking or unusable, such as in emergency
situations.

Operators acting in such emergency situations
would benefit from software supporting their
collaboration. Such a coordination layer would
enable them to execute sets of activities (in
sequence, concurrently, etc.) through specific
applications (e.g. computer supported cooperative
work - CSCW - tools [Grudin04a], workflow
management applications [Leymann00a], etc.)
running on hand-held devices, thus enabling
cooperative processes to be run. All such
applications typically require continuous inter-
device connections (e.g. for data/information
sharing, activity scheduling and coordination, etc.),
but these are not generally guaranteed in MANETs.

We investigated a specific pervasive architecture,
targeted at CSCW and workflow management
applications constituting the coordination layer and
able to maintain continuous connections among
MANET devices.

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for
profit or commercial advantage and that copies bear this
notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

.NET Technologies’2005 conference proceedings,
ISBN 80-86943-01-1
Copyright UNION Agency – Science Press, Plzen, Czech Republic

As a typical example, consider the aftermath of an
archeological disaster: following an earthquake, a
team is equipped with mobile devices (laptops and
PDAs) and sent to the affected area to evaluate the
condition of archeological sites and buildings, with
the goal of drawing a situation map to schedule
rebuilding activities. A typical cooperative process
to be enacted by the team would be that shown in
Figure 1 (depicted as an UML Activity Diagram):

• the team leader has previously stored all area
details (not included in the process), including
a site map, list of the most important objects
located in the site and previous
reports/materials;

• the team is considered as an overall MANET,
in which the team leader’s device (requiring
the most computing power, therefore usually a
laptop) coordinates the other team members’
devices, by providing suitable information (e.g.
maps, sensitive objects, etc.) and assigning
activities/tasks;

• team members are equipped with hand-held
devices (PDAs), which allow them to run some
operations but do not have much computing
power. Such operations, possibly involving
various hardware items (e.g. digital cameras,
GPRS connections, computing power for
image processing, main storage, etc.), are
provided as software services to be
coordinated. Team member 1 might compile
some specific questionnaires (after a visual
analysis of a building), to be analyzed by the
team leader using specific software in order to
schedule subsequent activities; team member 3
might take pictures of the damaged buildings,
while team member 2 may be responsible for
specific processing of previous and recent
pictures (e.g. for initial identification of
architectural anomalies).

In this case, it might be useful to match new
pictures with previously stored images. The device
holding the high-resolution camera must therefore
be connected to the one containing the stored
pictures.

But in a situation such as that shown in Figure 2,
the movement of the operator/device equipped with
the camera may result in its disconnection from the
others.

A pe
such
possi
4’s d
out
ensur
coord
activi
disco
activi

The p
by t
know
takes
be sa

In re
focus
proto
other
Effec
active
some
litera
hoc O
Zone

Team Member 2
(picture store device)

Team Member 3
(camera device)

Compile Select Building

Selected
Building

Go to
Destination

Zoom on
damaged part

Send Photos
Photos

Matching

Compile

Resul
t

Data

Team Leader Team Member 1

Capture Scene

Museum

Precarious

Bell-Tower Building

Church

Hit
Area

Picture Store

Operator

Bridge

Team Leader

Camera

Movement needed to accomplish
the task

Movement needed to maintain the network
connectivity; should be adaptively driven by the
cooperative application

Figure 1. Cooperative process.
Figure 2. Critical situation and adaptive
management.
rvasive architecture should be able to predict
a situation, alert the coordination layer, and
bly have a “bridging” device (team member
evice) to follow the operator/device moving
of range, maintaining the connection and
ing a path between devices. In this way the
ination layer schedules the execution of new
ties based on the prediction of a
nnection, as shown in Figure 3 (note the new
ty for team member 4).

rocess’s adaptive change is centrally managed
he coordination layer, which has “global”
ledge of the status of all operators/devices and
 into account idle devices, operations that can
fely delayed, etc.

cent years, research in the MANET area has
ed on the development of appropriate routing
cols, methods for energy preservation, and
 issues on the lower four ISO/OSI layers.
tive routing in ad hoc networks is still an
ly-addressed open problem [Vaidya04a], with

 interesting proposals presented in the
ture (e.g. Dynamic Source Routing – DSR, Ad
n demand Distance Vector – AODV routing,

 Routing Protocol - Z-RP, etc.).

To da
(and
has
chara
gener
lower
netwo
layer
startin
routin

In thi
imple
[DeR
comp
the W
Sourc
suppo
know
of a M
mainl
comm
laptop

The p
workf
frame
descr
the re
show

layer, while in Section 4 we report the results of
NSI component testing experiments. In Section 5 an
example of Windows Mobile application –MANET-
Chat – is described, to show the use of the NSI
component. Finally in Section 6 we report our
conclusions and future work.

2. WORKFLOW ARCHITECTURE
Figure 4 shows the architecture supporting
cooperative work on MANETs. The various
MANET devices are equipped with some wireless
network interfaces and specific hardware for
calculating distances from neighboring devices
(Wireless Stack in the figure), while the Network
Service Interface (NSI) provides the upper layers
with the basic services for sending and receiving
messages (through multi-hop paths) to/from other
devices, by abstracting the specific routing
protocols.

Services (i.e. specific applications supporting the
device users’ tasks 1) are accessible to other devices
and can be coordinated and composed in a
cooperative process. In contrast, the coordinator
device presents the Predictive Layer on top of the
Network Service Interface, signaling any probable
disconnection to the upper Coordination Layer.

Go to
destination

Zoom on
damaged part

Send Photos
Photos

Team Member 3 (camera
device)

Team Member 4
(bridge device)

Capture Scene

Follow Team
member 3

Matching

Team Member 2 (picture
store device)

Selected
Building

Select Building

Figure 3. Modified process (details).
te, development of application layer software
thus of any information system for MANET),
required abstractions on the specific
cteristics of the routing algorithms and, more
ally, on the services and data provided by the
 network layers. [DeRosa03a] proposes a
rk service interface to be used as the basic
on which to build application software,
g from the analysis and abstraction of current
g protocols.

s paper we present the design and a possible
mentation of the Network Service Interface
osa03a] layer as a .NET Compact Framework
onent, coded in C#, to be run on PDAs with
indows Mobile operating system. Dynamic

e Routing was chosen as the routing protocol
rting inter-device communication . To our
ledge, this is the first effective implementation
ANET routing protocol for PDAs (which are

y Windows-based); current research and the
ercial tools available are targeted only at
s running Linux.

aper is organized as follows: in Section 2, the
low architecture constituting the reference
work for cooperative work on MANET is
ibed; this provides the overall framework for
sults presented in this paper. In Section 3 we
 the design of the Network Service Interface

The Predictive Layer implements a probabilistic
technique [DeRosa05a] which can predict if all
devices will still be connected in the successive
moment. At a given time instant ti in which all
devices are connected, the coordinator device
collects all device distance information and builds a
next connection graph, i.e. the most likely graph at
the next time instant ti+1, in which the predicted
connected and disconnected devices are
highlighted. In the interval [ti, ti+1], the
coordinator layer enacts the appropriate actions to
enable all devices to be still connected at ti+1. In
predicting at ti the next connection graph, the
technique considers not only the current situation,
but also recent situations and predictions (i.e., at ti-1,
ti-2, etc.), specifically considering distances
calculated in the recent past. Thus, although the
pervasive architecture guarantees that constant
connection of all devices, MANET’s evolution is
considered as it would be in a “free” scenario (i.e.
without remedial actions by the coordination layer)
when predicting the future situation. The

1 Some of these services are applications that do not

require human intervention (e.g. an image processing
utility), whereas others act as proxies in front of human
actors (e.g. the service for instructing human actors to
follow a peer is a simple GUI that alerts the human
operator by displaying a pop-up window and emitting a
signal).

reasonable assumption is that if two devices have
the tendency to go out of radio range if left “free”,
and are thus connected through the coordinator’s
remedial actions, then this influences the
subsequent connection probability. The predictive
layer therefore calculates a probable distance
St+1(i,j) p(i,j) (see equation 1) at time ti+1 between
each pair of MANET devices i, j, , taking into
account previous real distances h (distance history)
between devices, each with a different weight (αk/c
with αk = k and c = ∑h

k=1 αk),as more importance is
given to recent movements (h is the dimension of
the predictive algorithm temporal window).

Starting from these predicted distances and by
considering the maximum communication range
(Sdev) of the wireless technology utilized (e.g.
approximately 100 m if the device uses IEEE
802.11b), the predictive layer estimates the
probability that a pair of MANET devices (i, j) is
still within radio range at the next instant ti+1
(equation 2).

These probabilities are used to build a square
probability matrix |E| x |E| (|E| = number of
MANET mobile devices) M = (mij), in which mij =
P(t+1)

(i,j) (equation 3). This matrix is used to build
the subsequent connection graph: the set of graph
nodes is E = {e1, …,em} and the set of graph arcs is
A = {(i, j) | mij = P(i,j) ≥ β}, where 0 ≤ β ≤ 1
represents a probability threshold. The value of β
depends on the type of situation, but is normally ≥
½.

Equation 3. The square probability matrix.

The strategy of the algorithm used in the Predictive
Layer component is therefore to find the connected
components in the subsequent connection graph
(using the SUB CCDFSG procedure), and verify if
two devices ei and ej, belong to the same connected
component (the TEST CONNECTION procedure);
if so, then they will still communicate in the
subsequent instant and if not, they will lose their
connection. After building the matrix M = (mij), it is
therefore possible to verify which devices are
directly (one hop) or indirectly (multi hop)
connected to all other devices, and thus let the
coordinator decide whether or not to take actions to
maintain connection between the involved devices.
The predictive algorithm is reported below:

Equation 1. Predicted distance between two
MANET devices i, j.

PROGRAM MGR(Comps[m])

1. numcomps ← 0
2. for i ← 0 to (m - 1)
3. do if Comps[i] = 0
4. then numcomps ← numcomps + 1 Equation 2. The Probability that a couple of

MANET devices i, j being still in the radio range at
the next instant ti+1.

5. CCDFSG(M, i, numcomps, Comps[])
6. return Comps[]

SUB CCDFSG(M, i, numcomps, Comps[m])
1. Comps[i] ← numcomps
2. for each M[i, j] ≥ Beta
3. do if Comps[j] = 0
4. then CCDFSG(M, j, numcomps, Comps[])
5. return NIL

1. PROGRAM TEST CONNECTION(i, j, Comps[m])
2. if Comps[i] = Comps[j]
3. then TEST ← true
4. else TEST ←false
5. return TEST

The coordination layer manages situations when a
peer is about to disconnect (e.g. by instructing a
specific device to “Follow Peer X”). For example,
if the coordination layer realizes a workflow

management system, then the coordination layer
may restructure the workflow schema on the basis
of the current prediction.

The MANETServices component consists of two
main packages: the MANETService package and the
RoutingProtocol package (Fig. 6).

Client Application MANETServices.dll
<<interface>>

Network Service Interface

isLinked(peer): StructInfo

receive(StructReceive):
message

Send(message,peer):
Boolean

Bind(port): ManetSocket

close(port): void

release(): void

<uses>

 Mobile Device j

Service 3 Service 4

Network Service Interface

Wireless Stack (802.11x,
Bluetooth)

 Mobile Device i

Service 1 Service 2

Network Service Interface

Wireless Stack (802.11x,
Bluetooth)

Mobile Device Coordinator

Wireless Stack (802.11x, Bluetooth)

Network Service Interface

Coordination Layer

Predictive Layer

MANETServices.dll

Figure 4. Proposed Architecture for supporting
cooperative work on MANETs.

3. NSI COMPONENT DESIGN
Figure 5 reports the Network Service Interface API
[DeRosa03a], which provides the following
operations to the upper layers:

• bind(), which enables applications running on
the same device to be bound to the MANET
network layer;

• send(), which sends messages to a peer and
reports the success or failure of data
transmission;

• receive(), which receives messages from peers
in the MANET;

• isLinked(), which reports whether a given peer
is present in the MANET at that time;

• close(), which closes the MANET socket
related to a specific application;

• release(), which releases all resources locked
by a specific MANET socket.

Figure 5 also shows the realization and dependency
relationships among the NSI, the MANETServices
component, and a generic Client Application
running on Pocket PC. Client Applications may be
stand alone (e.g. chats, electronic agendas, etc.) or
other components using the NSI to communicate
with other network peers, and MANETServices
implements the MANET Network layer, enabling
communication among MANET mobile devices.
The MANETServices component and its constituent
packages are described below.

The
and
Rout
and
routi
inter
are c
a Ro
have
inter
routi
MAN
In fa
from
kept
For e
than
impl
a
impl
conf
settin
requ
Figure 5. The NSI with realization and
dependency relationships.

MANETService

RoutingProtocol
<<uses>>

IRoutingProtocol

NSI

Figure 6. The MANETServices component and

its constituting packages.
MANETService package contains all interfaces
classes implementing the NSI API. The

ingProtocol package includes all interfaces
classes implementing the specific MANET
ng protocol: e.g. in our case, the classes and
faces implementing the DSR routing protocol
ollocated in the RoutingProtocolDSR package,
utingProtocol sub-package. It was decided to
 two packages linked by the IRoutingProtocol
face (a common interface for all MANET
ng algorithms) in order to keep the
ETServices component as modular as possible.
ct, by separating the routing algorithm logic
 the MANET network management, the NSI is
independent of the routing protocol utilized.
xample, to use AODV routing protocol rather
DSR protocol, it is only necessary to

ement the AODV algorithm (e.g. by producing
RoutingProtocolAODV sub-package), by
ementing the IRoutingProtocol interface, and
igure the MANET network layer context (by
g up specific component properties). This

ires no change to the MANET management,

nor, in consequence, to the client application source
code. This is a typical application of the “Strategy”
pattern presented in [Gamma94a], in which
ConcreteStrategies are the classes realizing the
MANET routing protocols (see Figure 7).

M
Th
pa
In
(se

As
or
ma
M
ru
ma
ro

tables if any, etc. At run time there is therefore only
one MANETManager class instance which has
strict control over how and when client applications
access the NSI. The unique manager object
maintains a list of opened MANETSocket objects
for each application, which obtain shared
information through synchronized methods. For
these reasons we adopted the Singleton pattern
[Gamma94a] for the MANET communication layer
as a design solution, where the singleton class is
our MANETManager class (Figure 9).

<<interface>>

IRoutingProtocol
getRouteFor(peer): Route

getAllNetUsers(): array

getNeighbours(): array

DSR

getRouteFor(peer): Route

getAllNetUsers(): array

getNeighbours(): array

AODV

getRouteFor(peer): Route

getAllNetUsers(): array

getNeighbours(): array
Client Application

MANETManager

static getMANETManager()

bind(int port): MANETSocket

close(int port): void

release(): void

<<uses>>

MANETSocket

send(Message message): bool

isLinked(Peer peer): bool

receive(): Message

1 0..

<<uses>>

Figure 7. The Strategy pattern for MANET
routing algorithms.
ANETService Package
e main classes constituting the MANETService
ckage and realizing the Network Service
terface are MANETManager and MANETSocket
e Figure 8).

 w
 a
n

AN
nn
n

uti

4. NSI IMPLEMENTATION AND
TESTING
We implemented NSI as a .NET Compact
Framework component, coded in C#, to be run on
both PDAs, with the Windows Mobile operating
system, and laptops (or any desktop) with the
Windows operating system desktop version. The
Dynamic Source Routing protocol [Johnson94a],
specifically optimized for route caching
[Vaidya04a], was implemented to support inter-
device communication. To our knowledge, this is
the first effective implementation of a MANET
routing protocol for PDAs (which are mainly
Windows-based), as current research and the
available commercial tools are targeted only at
supporting laptops running Linux.

<<interface>>

Network Service Interface

MANETSocket MANETManager

NSIRealization

0..* 1

Figure 8. Main Classes constituting the
MANETService package.
ith a file system manager, a window manager,
 printer spooler, the MANETManager class
ages and controls concurrent access to the

ET network layer of client applications
ing on the same mobile device, specifically
aging access to shared information of the
ng protocol used, e.g. neighbor list, routing

Figure 9. The Singleton pattern for MANET

connection manager.
For our experiments we deployed the NSI
component on several kinds of PDA devices, with:

• IPAQ 5550 and IPAQ 5540 with 450 MHz
processors and 128 MB RAM,

and on:

• desktops with 3 GHz processors and 1 GB
RAM;

• laptops with 2.8 GHz processors and 512 MB
RAM.

W
b
p
e
f
t
t
p
p

T
d
s
t

T
c
c
m
p
d
c
R
m
a
v
b
s
a
s
1
(
t

destination node, while the data transmitting time is
relatively small (requiring four packets per message
at most). Messages over 1024 bytes must be split
into more packets, thus requiring more time to send
the message from one hop to another. In this case,
the node mobility means that connection failures
are quite likely, necessitating a great deal of packet
retransmission (this also explains why the time
increases when the message size exceeds 1024
bytes).

The second test focused on measuring component
soundness and reliability. The main goal was to
verify the capacity of connection servers to accept
and satisfy incoming packet requests from
neighbors, especially when running on PDA
devices. This was achieved by producing high
packet traffic in the network to provoke frequent
full server connection queue exceptions and thus
packet retransmissions.

(())

(())
))((

))((

))((

))((

Laboratory ‘A’ Laboratory ‘B’

192.168.0.6

192.168.0.4

192.168.0.2 192.168.0.5

192.168.0.3 192.168.0.1

)
Figure 10. Experiment environments: laptops,
desktops, and PDAs placed in adjacent rooms

and constituting an unique MANET.
e deployed heterogeneous devices in order to
etter test the NSI component and verify its
erformance on devices with different hw/sw. It is
asy to predict that when a laptop or a desktop
orwards packets to PDAs, throughput is limited by
heir different clock speeds. One of our goals was
o establish how this affects the routing protocol
erformance (in our case the DSR protocol
erformance).

he experiments were conducted indoors, with the
evices placed in several adjacent rooms to form a
ingle MANET, thus using the walls as separators
o simulate obstacles (see Figure 10).

wo kinds of test were conducted on the NSI
omponent. The first was to fine-tune various
omponent parameters such as packet size. The
aximum time spent in discovering a node route,

lus the time spent in sending data (message) to
estination node (i.e. the total time spent for the
omplete execution of the getRouteFor(peer):
oute and the send(Message message): bool
ethods – see Section 3 IRoutingProtocol interface

nd MANETSocket class) was chosen as the
alidating parameter, and 256, 512, 768, and 1024
ytes were selected as instance values for packet
ize. Results showed that 1024 byte packages were
 good compromise between the time spent in
ending the message and its size. 512, 768, and
024 byte packages take almost the same time
Figure 11). In fact with messages of this size, most
ime is spent in discovering the route to the

P
s
b
1
s
w
s
m
n
c

TIME (msec

acket traffic was generated
ize messages (i.e., 1, 2, 4
yte packets and straining th
 shows the results of our ex
econds) to send the whol
ith 3 and 6 hosts is repo

ize . As can be seen, the
essage increases with its

umber of packet retran
aused by the greater n

Message Dim. (byte)

Figure 11. Experiment results. X axis represents
message size in bytes, while Y axis represents
the spent time to send message with 256, 512,

768, and 1024 bytes packet size, resp.
 by decomposing fixed
 and 8 MB), into 1024
e MANET hosts. Table
periments. The time (in
e message in MANET
rted for each message
time spent in sending a
size, due to the higher
smissions, principally
umber of full server

connection queue exceptions. The different results
obtained in the two cases considered are because
there are more alternative routes to the destination
node for MANET with 6 hosts than for 3 hosts,
thus decreasing the number of connection requests
to each host.

Message

Dimension
Time for 3

hosts (in sec.)
Time for 6

hosts (in sec.)
1 MB 14 323
2 MB 90 624

4 MB 438 1800

8 MB 840 2400

5. USING THE NSI COMPONENT
In this section we report an example of Windows
Mobile application –MANET-Chat –implemented
to show the use of the NSI component (see Figure
12).

MANET-Chat is a simple chat application that may
be run independently on PDA and laptop/desktop
devices and on top of a MANET network. It uses
the NSI component as MANET network layer to
send and receive messages to and from other
devices.

The main class application is the Form class of the
System.Windows.Forms package. It includes: a
TextBox object to enter the text message; a
ComboBox object to select the list of message
destinations; the isLinked, send, and close
button objects to verify if a device is linked to the
network, send the message, and unbind the
application from the NSI component. Finally, the
bigger TextBox object is used to show incoming
messages from other network devices. The
packages needed by the chat application are
reported below. The MANETService package and
the MANETService.Utility package contain all
classes implementing the NSI component.

Table 1. Experiment results obtained for
testing the component soundness and reliability.

I
w
t
a

Figure 12. MANET chat application used for
testing the MANETService component.
n the class constructor, variables are initialized
ith the instance of the MANETManager class and

he MANETSocket object assigned to the
pplication by a binding operation.

/* MANET chat application */

using System;
using System.IO;
using System.Drawing;
using System.Collections;
using System.Windows.Forms;
using System.Threading;
using System.Data;
using System.Text;
using System.Net;

/* using the MANETService package */

using MANETService;
using MANETService.Utility;

public class Form1 :
 System.Windows.Forms.Form
{
 …
 private MANETManager
 manager = null;
 private MANETSocket ms1 = null;
 private Thread listener = null;
 …
}

The send, isLinked, and close application buttons
use the NSI component’s send, isLinked, and close
methods. The receive method is called by a thread
object listening on a specific port.

6. CONCLUSION AND FUTURE
WORK
In this paper we presented the design and a possible
implementation of the Network Service Interface
layer as a .NET Compact Framework component,
coded in C#, to be run on PDAs with the Windows
Mobile operating system; we chose Dynamic
Source Routing as the routing protocol supporting
inter-device communication.

The layer prototype is available at:
http://www.dis.uniroma1.it/pub/~me
cella/projects/MobiDIS/.

We reported a set of NSI component tests and their
results. Finally, we described an example of
Windows Mobile application –MANET-Chat – in
order to show the use of the NSI component.

Future work will involve the development of the
predictive layer on top of the NSI component in the
.NET environment, using the probabilistic
technique presented in [DeRosa05a].

public Form1()
{ InitializeComponent();

/* Getting the unique MANETManager
instance */

 manager =
 MANETManager.getMANETManager()
;

/* Binding application on port 50 */

 ms1 = manager.bind(50);
 listener = new Thread(new
 ThreadStart(this));
 listener.Start();
 …
}

/* Using the NSI send() method */

public void send(){
 this.textBox3.Text = "";
 string nameDest =
 this.comboBox1.Text;
 string message =
 this.textBox1.Text;
 byte[] message_b=
 Encoding.UTF8.GetBytes(message);

 Boolean boo =
 ms1.send(nameDest,50,message_b);

 this.textBox3.Text =
 boo.ToString();
}// End the send method

…

/* Using the NSI receive() method */

public void receive(){
 …
StructReceive sr = new
StructReceive(50);
StructReceive result = null;
while(breaking)
{

result = ms1.receive(sr);

 if(result != null){
 string[] message =
 result.getMessage();
 …
 break;
 }
}
…
}// End the receive method

…
/* Using the isLinked() method */

public void isLinked(){
 string nameDest =
 this.comboBox1.Text;
 Boolean bo =
 ms1.isLinked(nameDest);
 textBox5.Text =
 bo.ToString();
}
/* The close method to unbind the
MANET chat application */

public void close(object sender,
System.EventArgs e)
{
 MANETManager.close(50);
 …
 MANETManager.release();
 …
}

7. ADDITIONAL AUTHORS
Fiammetta Pascucci and Piergiorgio Faraglia,
undergraduates of the Faculty of Computer
Engineering, University of Rome “La Sapienza”.

8. REFERENCES
[Agrawal03a] Agrawal, D. P., and Zeng, Q. A. ,

“Introduction to Wireless and Mobile Systems”,
Thomson Brooks/Cole, 2003.

[Grudin04a] Grudin, J., “Computer-Supported
Cooperative Work: History and Focus”, IEEE
Computer 27(5): 19-26, 1994.

[Vaidya04a] Vaidya, N. H., “Mobile Ad Hoc
Networks: Routing, MAC and Transport Issues”
Tutorial on Mobile Ad Hoc Networks,
http://www.crhc.uiuc.edu/nhv, University of
Illinois at Urbana-Champaign, USA, July 2004.

 [DeRosa03a] De Rosa, F., Di Martino, V.,
Paglione, L., and Mecella, M., “Mobile
Adaptive Information Systems on MANET:
What We Need as Basic Layer?”. In
Proceedings of the 1st IEEE Workshop on
Multichannel and Mobile Information Systems
(MMIS’03), Rome, Italy, 2003.

[DeRosa05a] De Rosa, F., Malizia, A., and
Mecella, M., “Disconnection Prediction in
Mobile Ad hoc Networks for Supporting
Cooperative Work”. IEEE Pervasive
Computing, 2005, to appear.

[Gamma94a] Gamma, E., Helm, R., Johnson,R, and
Vlissides, J., “Design Patterns: Elements of
Reusable Object-Oriented Software”. Addison-
Wesley Professional Computing Series, 1994.

[Johnson94a] Johnson, D., and Maltz, D. A.,
“Dynamic source routing in ad hoc wireless
networks," in Mobile Computing (T. Imielinski
and H. Korth, eds.), Kluwere Academic
Publishers, 1994.

	INTRODUCTION
	WORKFLOW ARCHITECTURE
	NSI COMPONENT DESIGN
	MANETService Package

	NSI IMPLEMENTATION AND TESTING
	USING THE NSI COMPONENT
	CONCLUSION AND FUTURE WORK
	ADDITIONAL AUTHORS
	REFERENCES

